Stable self-maps of the quaternionic (quasi-) projective space
نویسندگان
چکیده
منابع مشابه
Extending Self-maps to Projective Space
Using the closed point sieve, we extend to finite fields the following theorem proved by A. Bhatnagar and L. Szpiro over infinite fields: if X is a closed subscheme of P over a field, and φ : X → X satisfies φOX(1) ' OX(d) for some d ≥ 2, then there exists r ≥ 1 such that φ extends to a morphism P → P.
متن کاملMaps to Spaces in the Genus of Infinite Quaternionic Projective Space
Spaces in the genus of infinite quaternionic projective space which admit essential maps from infinite complex projective space are classified. In these cases the sets of homotopy classes of maps are described explicitly. These results strengthen the classical theorem of McGibbon and Rector on maximal torus admissibility for spaces in the genus of infinite quaternionic projective space. An inte...
متن کاملWillmore Spheres in Quaternionic Projective Space
The Willmore energy for Frenet curves in quaternionic projective space HP is the generalization of the Willmore functional for immersions into S. Critical points of the Willmore energy are called Willmore curves in HP. Using a Bäcklund transformation on Willmore curves, we generalize Bryant’s result on Willmore spheres in 3–space: a Willmore sphere in HP has integer Willmore energy, and is give...
متن کاملProjective Group Representations in Quaternionic Hilbert Space
We extend the discussion of projective group representations in quaternionic Hilbert space which was given in our recent book. The associativity condition for quaternionic projective representations is formulated in terms of unitary operators and then analyzed in terms of their generator structure. The multi–centrality and centrality assumptions are also analyzed in generator terms, and implica...
متن کاملExtending Self-maps to Projective Space over Finite Fields
Using the closed point sieve, we extend to finite fields the following theorem proved by A. Bhatnagar and L. Szpiro over infinite fields: if X is a closed subscheme of P over a field, and φ : X → X satisfies φOX(1) ' OX(d) for some d ≥ 2, then there exists r ≥ 1 such that φ extends to a morphism P → P.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences
سال: 1984
ISSN: 0034-5318
DOI: 10.2977/prims/1195180875