Stable self-maps of the quaternionic (quasi-) projective space

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extending Self-maps to Projective Space

Using the closed point sieve, we extend to finite fields the following theorem proved by A. Bhatnagar and L. Szpiro over infinite fields: if X is a closed subscheme of P over a field, and φ : X → X satisfies φOX(1) ' OX(d) for some d ≥ 2, then there exists r ≥ 1 such that φ extends to a morphism P → P.

متن کامل

Maps to Spaces in the Genus of Infinite Quaternionic Projective Space

Spaces in the genus of infinite quaternionic projective space which admit essential maps from infinite complex projective space are classified. In these cases the sets of homotopy classes of maps are described explicitly. These results strengthen the classical theorem of McGibbon and Rector on maximal torus admissibility for spaces in the genus of infinite quaternionic projective space. An inte...

متن کامل

Willmore Spheres in Quaternionic Projective Space

The Willmore energy for Frenet curves in quaternionic projective space HP is the generalization of the Willmore functional for immersions into S. Critical points of the Willmore energy are called Willmore curves in HP. Using a Bäcklund transformation on Willmore curves, we generalize Bryant’s result on Willmore spheres in 3–space: a Willmore sphere in HP has integer Willmore energy, and is give...

متن کامل

Projective Group Representations in Quaternionic Hilbert Space

We extend the discussion of projective group representations in quaternionic Hilbert space which was given in our recent book. The associativity condition for quaternionic projective representations is formulated in terms of unitary operators and then analyzed in terms of their generator structure. The multi–centrality and centrality assumptions are also analyzed in generator terms, and implica...

متن کامل

Extending Self-maps to Projective Space over Finite Fields

Using the closed point sieve, we extend to finite fields the following theorem proved by A. Bhatnagar and L. Szpiro over infinite fields: if X is a closed subscheme of P over a field, and φ : X → X satisfies φOX(1) ' OX(d) for some d ≥ 2, then there exists r ≥ 1 such that φ extends to a morphism P → P.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences

سال: 1984

ISSN: 0034-5318

DOI: 10.2977/prims/1195180875